Narrowing Data-Structures with Pointers*
Rachid Echahed and Nicolas Peltier

LEIBNIZ-IMAG, CNRS
46, avenue Félix Viallet
38031 Grenoble Cedex, France
Rachid.Echahed@imag.fr, Nicolas.Peltier@imag.fr

Abstract. We investigate the narrowing relation in a wide class of
(cyclic) term-graph rewrite systems. We propose a new sound and com-
plete narrowing-based algorithm able to solve goals in presence of data
structures with pointers (e.g., circular lists, doubly linked lists etc.). We
first define the class of rewrite systems we consider. Our rules provide
features such as pointer (edge) redirections, relabeling of existing nodes,
in addition to the creation of new nodes. Moreover, we split the set of
nodes of term-graphs in two (possibly empty) subsets: (i) variables and
(ii) names. Variable nodes can be mapped against any other node whereas
names act as constants and thus they are supposed to match themselves.
This distinction between nodes allows us to synthesize, through the nar-
rowing process, data-structures with circular shapes. In a second step, we
define the rewriting and narrowing relations. We then show the sound-
ness and completeness of narrowing.

1 Introduction

Narrowing is the heart of the operational semantics of declarative languages
which integrate functional and logic programming paradigms [10]. Programs in
these languages are term rewrite systems. Their operational semantics consists
in solving goals. For example, let us consider the following program which defines
the length of a sequence:

length(nil) — 0 length(cons(z,u)) — s(length(u)).

To solve the goal length(cons(x,nil)) = z, one may normalize the term
length(cons(x, nil)) and gets the unique solution z = s(0). But the following
goal length(u) = s(s(0)) cannot be solved by simple normalization ; instead nar-
rowing can be used to synthesize the answer u = cons(z1, cons(za, nil)) where
x1 and x4 are fresh variables.

Narrowing has been widely investigated in the framework of first order term
rewrite systems and optimal strategies have been proposed (e.g. [2]). In this
paper, we propose to extend narrowing to a large class of term-graph rewrite
systems. There are at least two reasons that motivate our work. First, efficient
implementation techniques of declarative languages use dags (directed acyclic
graphs) to implement terms. Second, in recent developments of graph transfor-
mations [3,4, 6], it is shown that data-structures with pointers could be handled
by using graph rewrite systems, and thus rule-based languages such as declarative

* This work has been partly funded by the project ARROWS of the French Agence
Nationale de la Recherche.

www.manaraa.com



ones could benefit from such results in order to fully integrate cyclic term-graphs
(with pointers), such as circular lists or doubly linked lists, as first class objects.

In this paper, we consider term-graph rewrite systems composed of rules of
the following shape (see Section 4 for details): L — A, where L is a (constrained)
term-graph and A is a sequence of actions the aim of which is the construction of
the right hand side. Roughly speaking, A could be split into two parts, say R and
D, where R is a term-graph and D is a sequence of edge (pointer) redirections.
For example, the following rule inserts an element in a circular list (we use
the classical linear [5] notation of term-graphs, where non-connected graphs are
separated by “)):

~viinsert(a, a:cons(b,u)), B:cons(c, o) — y:cons(a, a); 5.2 > 7.

Applying this rule to the term-graph ~;:insert(a, ay:cons(b, B1:cons(c, ar)))
we get the intermediate term-graph ~;:cons(a,aq:cons(b, B1:cons(c,a1))) be-
fore we perform the action (3.2 > ~;. The aim of this action is to redi-
rect the second edge outgoing of the node [; in order to point the node
v1. The final result of the application of the rule above is then the term
~1:cons(a, ay:cons(b, Br:cons(c,v1))).

The rewrite rules we consider define a large class of term-graph rewrite sys-
tems (formally defined in Section 4). It includes several useful features. Left-hand
sides could be cyclic with some constraints (disequations) on the nodes. Actions
building the right hand side can execute redirections of pointers (edges) either
locally as in the example above or globally as it happens when rewriting rooted
term graphs. We have no restriction over the cyclic term-graphs to be rewritten.

Solving goals with cyclic term-graphs is certainly not an easy task. Con-
sider for instance the operation # which computes the number of elements of
a circular list (the complete definition of this operation is given in Section 5).
If we consider the goal #(u) = s(s(0)) then we should get a solution such as
u = a:cons(x, B:cons(y,)) with the constraint « % (3. Note that there is no
published algorithm which is able to synthesize such a solution. Nodes «, 3, x
and y are supposed to be fresh variable nodes. The distinction between (con-
stant) nodes and variable nodes is essential in our setting. Variable nodes behave
as classical first order variables in the unification process for example, while the
remaining nodes (constants) could be seen as global variables in imperative lan-
guages.

Defining narrowing in our setting turns out to be trickier than in the previous
works. This is mainly due to the actions we perform on term-graphs such as
pointer redirections and also to the fact that graphs are not considered equal up
to bisimulation. Consider for instance the following term-graph f(§:a,~:a) where
0 and + are variable nodes, to be narrowed by using the rule f(a:a, 8) — a:b (8
denotes a variable). We can get two different narrowing steps

f(0:a,v:a) ~ 15—y f(0:b,0)  or f(0:a,7v:a) ~ 54y [(0:D,7:a).

From this simple example, we can see that instantiation of variable nodes
during the narrowing process is not usual. Indeed, in contrast to the usual case,
the computed solutions may include disequations, such as ¢ % - in the second
derivation above.

www.manaraa.com



There are very few results in the literature on term-graph narrowing. In
[12,9, 11], acyclic term-graph narrowing have been studied and basic narrowing
strategies have been proposed in [11,9]. Cyclic term-graph narrowing was first
studied in [7] in the context of weakly-orthogonal term-graph rewrite systems.
Its extension with graph collapsing could be found in [8]. Optimal term-graph
narrowing strategies have been proposed in [7,8]. Very recently, [1] extended
[7] and proposed efficient term-graph narrowing strategies in the presence of
non-deterministic functions (i.e. non-confluent rewrite systems).

In this paper, we go beyond these results and tackle cyclic term graph nar-
rowing in a very large class of term-graph rewrite systems that subsumes by
far the weakly-orthogonal graph rewrite systems studied in [7]. We define the
narrowing relation induced by the considered term-graph rewrite systems and
prove its soundness and completeness.

The paper is organised as follows. Section 2 gives the precise definition of the
term-graphs we consider as well as some basic definitions we need in the paper.
In Section 3 we give the definitions of different actions we operate on graphs
such as node creation and redefinition, pointer redirections etc. Section 4 defines
the rewrite rules, rewrite steps and the term-graph rewrite systems we consider.
Section 5 is dedicated to the definition of narrowing relation. The soundness and
completeness of the narrowing relation are investigated in Section 6. Finally,
Section 7 concludes the paper. Due to length restrictions, proofs are omitted.

2 Term-Graph

In this section, we describe the class of data structures (i.e. term-graphs) con-
sidered in the paper. The definitions are close to the ones of [5], but some of the
notations are slightly adapted in order to better suit our purposes.

We assume given a set of names A, a set of variables V and a set of function
symbols . We denote by N the set N'= AU V. N is the set of nodes.

Definition 1. (Term-Graph) A reference on a set of nodes N C N is an ex-
pression of the form f(ai,...,ay) where f € ¥, n >0 and aq,...,a, € N (if
n = 0 then f(aq,...,an) should be written f). The set of references on a set
of nodes N is denoted by T(N). A term-graph G is defined by a set of nodes
N(G) C N and a partial function refg from N(G) to T(N(G)).

For instance, a term-graph consisting in a variable node o without reference
may be seen as a variable (in the usual sense), i.e. denotes an arbitrary ground
term-graph. If « is a name, then the graph is partially instantiated: the name
of one of its nodes is known, but its reference and its other nodes remain to be
specified.

We denote by headg(a) the head symbol of ref(«) (if it exists, otherwise
headg () is undefined). We denote by dom(G) the set of nodes « s.t. ref ()
is defined. Note that we may have dom(G) # N (G). A term-graph G is said to

www.manaraa.com



be ground if N(G) C A. We write G C H iff N(G) C N(H) and if for any
a € dom(G) we have o € dom(H) and refy(a) = ref(a). Intuitively, G C H
if G is a subgraph of H. The notion of subgraph is the analogue of the notion
of subterm for usual terms. In what follows, we always denote nodes (variables
and names) by Greek letters «, 3, ..., function symbols by f,g,... and constant
symbols by a,b, .. ..

Although Definition 1 is useful from a theoretical point of view, in the forth-
coming examples, we adopt a more convenient and readable (commonly used,
see for instance [5]) linear notation for term-graphs. We write a term-graph as a
standard term, but we prefix some of the subterms (those occurring several times
in the considered term-graph) by nodes. Obviously, naming (i.e. prefixing) sub-
terms with nodes allows one to share subterms and to denote infinite (rational)
terms. For instance, the expression «a:f(a,g(«)) denotes a (cyclic) term-graph
s.t.: dom(G) = {avﬁv’)/:lﬁ T’€fg(a) = f(ﬁv’}/)a refG(ﬂ) =a, 7ne.}(‘('J'(’Y) = g(a) (677 are
arbitrarily chosen nodes distinct from «). Depending on the context the unnamed
nodes 3, could be constants or variables. Note that the above term-graph could
also be written a:f(5:a,v:9()), but for the sake of clarity, we prefer to skip use-
less names. Two distinct names necessarily correspond to distinct nodes, whereas
two distinct variables can be made identical by instantiation. For instance, let us
consider the following term-graph G = «a:cons(1, B:cons(1,a)). If a, B are vari-
ables, then § may be instantiated by «. Thus the term-graph d:cons(1,d) is an
instance of G. More precisely, G denotes a circular list of length either 1 or 2. In
contrast, if «, 8 are distinct names, G denotes a (specific) circular of length 2.
The possibility of handling abstract nodes allows one to handle partially defined
data-structures, which is absolutely essential for defining narrowing algorithms.
It also allows the programmer to define more general rules, which is capital from
a practical point of view (for instance we could compare two lists of integers
without knowing whether they are physically equal or not).

A substitution o is a function mapping each variable z in V to a node zo € N.
The domain of a substitution o is denoted by dom(c) and defined as the set of
variables x s.t. zo # x. A substitution is said to be ground iff zo € A for any
x € dom(o). If 0,0 are two substitutions, then o6 denotes the composition of
o and 6 (i.e. 0@ = 0(o(x))). o is said to be more general than 6 if there is a
substitution ¢’ s.t. oo’ = 6.

The image of a standard term by a substitution is always a term. However,
in our setting, the image of a term-graph by a substitution is not necessarily
a term-graph. For instance if G = f(«:a,3:b) is a term-graph where «, 5 are
variables, then the image of G by a substitution ¢ : {& — 7,5 — 7} is not a
term-graph. Thus, we can instantiate a term-graph G by a substitution o only if
o is compatible with the term-graph in the sense that if two variables are mapped
to the same node then the corresponding references (if they exist) must be the
same. Formally, a substitution o is said to be compatible with a graph G iff for
any a, § € dom(G) s.t. ac = fo we have refg(a)o = refa(5)o.

! This is not equivalent to the usual notion of “ground term” because the nodes do
not need to be associated to a reference.

www.manaraa.com



If o is compatible with G, then we denote by Go the graph H s.t.: N(H) =
{ao | a € N(G)} and for any o € dom(G), refy(ac) = refs(a)o. Note that
Go is well-defined if o is compatible with G, since by definition aoc = fo =
refa(a)o = refo(B)o. H is called an instance of G iff there exists a substitution
o compatible with G s.t. Go C H.

3 Graph Transformation

We introduce some basic operations on term-graphs: creation of a new node, node
redefinition (i.e. replacement of the reference associated to an existing node by
a new reference) and global redirection (i.e. redirection of all edges pointing to a
node « to a node ). Node redefinition subsumes in particular edge redirection
(i.e. redirection of an existing edge). For every action a, we shall denote by G|q
the result of the application of the action a on the term-graph G. The actions
and their applications are defined in the following sections.

A node creation is an expression of the form o™ where « is a node in
V. Applying a node creation to a term-graph simply adds a new node in the
term-graph (with no reference).

We assume given an (infinite) subset of A, denoted by C and a total prece-
dence < among elements of C. Every created node is associated to a name in
C.

If G be a graph and o € V then G|,+) denotes the term-graph H s.t.:

— N(H) = N(G) U{NewNode(G)}, where NewNode(G) denotes the smallest
(according to <) node in C not occurring in G.

— For every node 3 € dom(G), refy (3) = refs(6).

— refy (NewNode(G)) is undefined.

Note that H does not depend on «. As we shall see, o will be instantiated
by NewNode(G) which is useful only when applying a sequence of actions.

A node redefinition is a pair a:r where « is a node in V and r a reference.
We denote by Gq.r) the term-graph H defined as follows:

— N(H) = N(G).
— For every node (3 € dom(G), if B # a then refy (8) = refo(3).

— refy(a) = 7.

For instance, B:f(c,6:a)(,. 150y = B:f(c:f(d:a,a),6). Note that we may
have @ € dom(G) (in this case « is redirected) or @ € dom(G) (in this case new
edges and label are created). Note that a node redefinition does not introduce
new nodes in the term-graph(this has to be done before by the node creation
action).

An edge redirection may be seen as a particular case of node redefinition
in which a unique edge is redirected. It is an expression of the form «.i > (3,
where i € N, « € N and 8 € N. Applying an edge redirection to a term-graph
consists in redirecting the i-th argument of the node a to point to the node 3.

www.manaraa.com



If G is a term-graph and «a, 8 € N(G), where a € dom(G), then G5

denotes the graph H defined as follows: H = Gla:f(BryesBim1 By Bisrses )]
where f(B1,...,0n) = refa(a). Note that if n < ¢ then by convention
f(ﬁlv"'7ﬂi—17ﬂaﬂi+lv"'>ﬂn) = f(ﬂlavﬂn) thus H = G.

For instance, B:f(a:f(d : a,0),6)(, 155 = B:f(e:f(B, 6:a),6).

A global redirection is an expression of the form o > 3, where o € N
and 3 € . Applying a global redirection to a term-graph consists in redirecting
any edge pointing to « to the node (3, i.e. in replacing any occurrence of « in a
reference in G by (.

If G is a term-graph and «,8 € N(G) then G|usp denotes the graph

H defined as follows: N(H) ¥ N(G) and for every node v € dom(G) s.t.

refa(y) = f(Bi,-- ., Bn) then refy(v) = f(B,,...,3,) where for every i € [1..n]
we have (3! =3 if 5; # a and Jox = 3 otherwise (refy (7) is undefined if refe ()
is undefined). This action is said to be “global” because it may affect any node
in the term-graph (in the worst case all nodes may be affected). Global redirec-
tions are necessary to express easily collapsing rules of the form f(z) — = (any
occurrence of f(x) in the term-graph should be replaced by ).

For instance, B:h(d:9(a:a, 5)’a)[a>>ﬁ] = B:h(5:9(8,0), B), .

An action is either a node creation, or an edge redirection or a node definition
or a global redirection. Substitutions can be extended to sequences of actions
using the following definitions (where ¢ denotes the empty sequence and 7.7’
denotes the concatenation of 7 and 7).

—e0 Ze, (a.1)0 E ao.70.

— (a™)o = ot (a is not instantiated since « is a variable denoting the new
node).

— (:f(B))o = ao:f(B0o), (a > B)o = ao > fBo, (a.i> B)o = ac.i > fo.

If 7 is a sequence of actions, and G is a term-graph, then G|} denotes the
term-graph defined as follows:

def
- Gqg=G

_ — ot def
Ifa=a", Gur = G [r{a—NewNode(G)}]"
the new created node in the rest of the sequence (this allows one to “reuse”
this node, hence to create edges starting from or pointing to this node).

Note that «a is instantiated by

= Gla L Gla) ] if a is not a node creation.

Informally, G[;] is obtained from G by applying the actions in 7, in the corre-
sponding order. For instance «: f(«, O‘)[6+,5:a,a.1>>5} = a:f(a,a), a/[o/:a,oz.1>>o/] =
a:f(a, ), 0tap, 1541 = a:f(:a, ), where o/ = NewNode(a: (o, ) (commas
are used to separate the actions in the sequence).

Note that G|, is not defined if 7 is an action a.i > 3 s.t. a € dom(G). For
instance a:ajg.1.q is undefined because 3 is not a node in a:a. Otherwise, G
is always defined.

www.manaraa.com



If 7 is a sequence of actions then we denote by r(7) the set of nodes « s.t.
7 contains an action of the form « > § or a.i > § or a:f(3). Intuitively, (1)
denotes the set of nodes that are affected by the sequence of actions 7.

4 Rewrite Rules

Obviously, rewrite rules operating on term-graphs should be able to check
whether two nodes are equal or not. This is useful for instance when traversing
a circular list: in order to avoid looping, we need to compare the current node
with the initial one before proceeding to the tail of the list. These conditions
correspond to disequality constraints between nodes, that need to be “attached”
to the left-hand side of the rule. More precisely, a node constraint is a finite
conjunction of (possibly none) disequations of the from « % 3, where a, 8 € N.
The empty node constraint is denoted by T.

A disequation « % [ is false if @« = [ and true if o, are two distinct
symbols in A. More formally, a substitution ¢ is said to be a solution of a node
constraint ¢ iff for any (a % ) occurring in ¢ we have ao # o and ao, fo € A.
We denote by sol(¢) the set of solutions of ¢. A substitution o is said to be a
counter-solution of a node constraint ¢ iff there exists (« % ) in ¢ s.t. we have
ao = Bo. We denote by csol(¢) the set of counter-solutions of ¢.

Clearly, if o € csol(¢) then o6 € csol(¢) for any substitution 6, and o ¢
sol(¢). Similarly, if o € sol(¢) then o6 € sol(¢) for any substitution 6, and
o & csol(¢). If o is a ground substitution and dom(o) contains all the variables
occurring in ¢, then we have either o € sol(¢) or o € csol(¢).

A constrained term-graph is a pair [G | ¢] where G a term-graph and ¢ a
node constraint. For the sake of clarity, [G | T] is denoted by G.

We are now in position to introduce our notion of term-graph rewrite rule.

Definition 2. A term-graph rewrite rule is an expression of the form [L |
@] —a R where:

1. [L| ¢] is a constrained term-graph (the left-hand side of the rule).

2. R is a sequence of actions, s.t. if R contains an action of the form (B.i > ~
then 3 € dom(L)?.

3. a € dom(L) (« is the root of the rule).

Example 1. The following rules insert an element « before a cell 8 in a doubly
linked list 6. A doubly linked list cell is denoted by a term-graph dli(c, (3, 0)
where « denotes the previous cell, § the value of the cell and § the next cell
(tail).

— Xiinsert(a, 8, 8:mil) —x A > §. If § is nil then the result is &.

2 This ensures that the action is always applicable on L.
3 For the sake of clarity we write the constrained term-graph [A:insert(ca, 8, 6:nil) | T]
without brackets since its constraint part is T

www.manaraa.com



— [Miinsert(a, B, 8:dll(61,2,03)) | B % 0] —x A.3 > d3. If 3 is distinct from ¢
then o must be inserted into the tail of §.

— Xiinsert(a, B, B:dl(B1, B2, B3)) —x A:dll(B1, o, B), 1.3 > A, 3.1 > . Other-
wise, we create a new cell A:dll(f1, «, 3), we redirect the first argument of 8
to A and the last argument of the cell before 3 to A.

Note we may have 8 = 1 = 5 in the last rule (circular list of length 1). Thanks
to the flexibility of our language, we do not need to give any specific rule for this
particular case (this is essential from a practical point of view).

Definition 3. (Rewriting Step) Let G be a ground term-graph. Let p = [L |
@] —a R be a rewrite rule. We write G —, H iff the following holds:

— There exists a ground substitution o of the variables occurring in L s.t. Lo C
G and o € sol(9).
- H= G[Ro’]-

If R is a set of rewrite rules, then we write G —r H if G —, H for some
p € R. As usual —% denotes the reflexive and transitive closure of —x.

Remark 1. The substitution o can be easily computed by using standard unifi-
cation: for any o € dom(L), one has to find a node 8 € dom(G) s.t. ac = 3 and
refy (a)o = refg(B). Of course, there may be several solutions (as in the usual
case: a term may contain several distinct subterms matched by the left-hand
side of a given rule). An important difference with the usual case is that even
if we fix the value of the root node « in L, there may be still several solutions,
except if all the nodes in L are accessible from a.

Ezample 2. Let p be the following rule: a:f(0,0:9(7)) —a a:h(5,0),6.1 > «.
This rule transforms a term-graph «:f(3,0d:9(7)) into a:h(f,g(c)). Let G =
A1:f(A2:g(Ad), As:g(A4:a)). We apply the rule p on G. We denote by L the left-
hand side of p. We try to find a substitution o s.t. Lo C G. Since heady(«) = f,
we must have headg(ao) = f, thus ac = A;. Since we must have ref(ao) =
refr,(ao) we have So = Ay and d0 = A3. Then since refz(A3) = Lo(As3), we
have g(A\4) = L(6)o = g(~y)o, thus yo = \4.

Clearly, the obtained substitution satisfies the desired conditions. We obtain
the term-graph:

Al:f()‘2:g()‘4)7/\319(/\4:0‘))”1:h(Ag,Ag),A341>>A1]
= )\1:h(A2:g(A4), Ag:g()\4:a))[/\3<l>>)\1] = /\1:h()\2:g()\4), /\31g(/\1)).

Example 8. We consider the rule £ defined as follows: a:f(0:a,d:a) —4 5:b,d:c.
Let G be the term-graph A;:f(Aa:a, A2).

We apply £ on G. The only possible substitution is: ¢ = {a —
AL B = A2, 0 — Az}, We obtain the term-graph: Ai:f(Aeia, A2)py, 40,00 =
)\12f(>\22b, )\2)[)\2:4 = )\1:f()\2107 )\2)

www.manaraa.com



5 Narrowing

5.1 Term-Graph Substitutions

We need to introduce some further notations. Two term-graphs G and H are
said to be disjoint (written G || H) if dom(G)Ndom(H) = §. Two term-graphs G
and H are said to be compatible (written G >t H) iff for any o € N s.t. ref ()
and refy(«) are defined, we have refo(a) = refy(a) (i.e. G, H coincide on the
intersection of their domains). Obviously, if G || H then G > H.

If G, H are compatible then G U H denotes the minimal term-graph G’ s.t.
G C G’'and H C G (it is clear that G’ always exists).

If G > H then G\ H denotes the (minimal) term-graph I s.t. I || H and
HUI=G.

The notion of g-substitution is the analogue of the notion of substitution for
terms. When instantiating a term-graph, one has not only to specify the value of
the variables occurring in it, but also to define the references corresponding to
the nodes that are introduced by the substitution. Clearly, these nodes should
be distinct from the ones already occurring in the considered term-graph. This
is formalized by the following:

Definition 4. (g-substitution) A g-substitution is a pair ¢ = (0, G) where o is
a substitution and G a term-graph s.t. if © € dom(o) then zo € N(G). A g¢-
substitution of a term-graph H is a g-substitution ¢ = (o, G) s.t. o is compatible
with H and G Ho. In this case, Hs denotes the term-graph: Ho U G.

For instance, if H = o:f(8,9) and ¢ = ({8 — d},0:9(, \:a)), then H¢ =
a:f(0:9(d, \:a), d). Note that § cannot have a reference in H distinct from the
one in ¢, according to the previous definition, since it is defined in d:¢(d, A:a).

(0,@G) is said to be ground if o, G are ground. If ¢ = (0, G) then o, denotes
the substitution o and Gr. denotes the term-graph G. If ¥ is a g-substitution
of Gr, then ¢ denotes the g-substitution (o.oy, Grc6 U Gry) (composition of ¢
and ¥). ¢ is said to be more general than 1 if there is a substitution g s.t. ¢p = 9.

By a slight abuse of notation, we write ¢ € sol(¢) (resp. ¢ € csol(¢)) iff
o¢ € sol(¢) (resp. o¢ € csol(¢)). Similarly, if ¢ is a node constraint (resp. a node
or a sequence of actions) then ¢¢ denotes the expression ¢o. (note that if G is
a term-graph, then Go. is not equal to G¢ if Gr¢ is not empty).

5.2 Symbolic Handling of Actions

We now introduce additional definitions allowing one to encode actions at the
object level.

An s-graph is either a term-graph or an expression of the form apply(G, 1)
where GG is a term-graph and 7 is a sequence of actions. A g-term is a triple
[G | #]" where G is an s-graph, ¢ a node constraint and 7 a sequence of actions.
7 denotes in some sense the “history” of G, i.e. the set of actions applied for
getting G. ¢ imposes additional constraint on the variables occurring in G.

www.manaraa.com



The use of g-terms allows us to handle actions in a symbolic way (i.e. without
performing them explicitly). G|, and apply(G, 7) have very different meanings:
G|7) denotes the term-graph obtained by applying 7 on G, whereas apply(G, 7) is
merely a syntactic object. We relate these two notions by associating semantics
to g-terms. If G is a g-term, then value(G) is a term-graph defined as follows:
value([G | ¢]7) = G if G is term-graph, and value([apply(G, x) | ¢]7) = Gy
otherwise (note that value([G | ¢]7) does not depend on ¢ and 7).

5.3 Narrowing Steps

Obviously, an action can be applied on a node « only if every other node (3
occurring in the term-graph is known to be distinct from «. Otherwise, we do
not know whether (3 is to be redirected or not, hence we cannot apply the action.
The next definition formalizes this notion.

Let a be an action s.t. (a) = {a}. A node § is said to be a-isolated in a
constrained term-graph [G | ¢] iff either § is syntactically equal to « or if the
application of the action a cannot affect the occurrences of 3 in [G | ¢], i.e. iff
one of the following conditions holds: either 8 = «, or 8 & dom(G) and a is not
a global redirection, or 8 % a occurs in ¢, or «, 3 € A.

A constrained term-graph [G | ¢] is said to be ready for an action a if any
node in [G | @] is a-isolated. Roughly speaking a node S is a-isolated if one has
enough information to decide whether 3 is affected by a or not. This ensures
that a behaves in a similar way for all possible values of 3.

Our narrowing algorithm uses several rules. The first one corresponds to the
usual narrowing step and is defined as follows.

[G Y] ~ps [H [T
If:

— G is a term-graph, p = [L | ¢] —« R is a rewrite rule.
— o is a most general substitution compatible with L and G s.t.:
e Lo 1 Go (Lo and Go must be compatible),
e ao € dom(Go) (the root of the rule occurs in the considered term-graph).
— H = apply(Go U Lo, Ro), &' < Lo \ Go, ¢« < (0,G").
— ' =vo Ao A /\Ber(m),éedom(G') B#o.

¢’ inherits from the constraints in ¢ and in ¢. The additional disequations
B % § express the fact that every synthesized node § (i.e. every node occurring
in dom(Lo) but not in dom(Go)) should be distinct from the nodes § that
have been previously redirected. This property is essential for soundness. The g-
substitution (o, G’) plays a role similar to the one of unifiers in term narrowing.
In contrast to the rewrite step, this first narrowing rule does not explicitly apply
the sequence of actions R on the term-graph Go U Lo but only encodes them
into the g-term (they will be done by forthcoming rules). The reason is that the
actions are not necessarily applicable at this point, since the term-graph may
not be ready for them.

www.manaraa.com



Ezample 4. Let p be the following rule: a:f(8,d:9(7:a,()) —a @:h(5,6),5.1 >
a. Let G = [A:f(A2,A3) | T]” (where A1, A2, A3 are variables). We assume
that 7 = A1:f(A2, A3) (hence A1 has been redirected). We apply the narrowing
rule on G, using the rule p. We denote by L the left-hand side of p. We try to
find a substitution o, compatible with G and L, s.t. ao occurs in dom(G) and
Go 1 Lo. Since headr,(a) = f, we must have headg(ao) = f, thus ac = A.
Since we must have ref, (ao) = ref;,(ao) we have fo = Ay and do = As.

Obviously, the obtained substitution satisfies the desired conditions. The
term-graph G’ in the definition of the narrowing rule is Az:g(v:a, () (v, are
variables). We obtain:

[[apply( (/\1:f(/\2,)\3),)\3:g(’y:a, C)) 5 )\12}7,()\2,)\3),)\3.1 > )\1) | A1 % )\3 A A1 % ’y}]T.

Note that the disequations A1 % A3 A A1 % v have been added in the con-
straint part of the g-term. This is due to the fact that since A; has already been
redirected, the nodes synthesized during the application of the narrowing rule
should be distinct from A;. The actions Aj:h(Ag, A\3) and A3.1 > A; are not
performed at this point but only stored into the g-term.

Additional narrowing rules are required to handle g-terms of the form
lapply(G,7) | ¢]¢, i.e. to explicitly apply the actions introduced by the pre-
vious rule. The first one — denoted by T — is trivial: it simply transforms a
g-term into a term-graph in case of empty sequences of actions.

[apply(G,e€) | @] ~ 1, [G | 4]

The second and third rules, respectively denoted by A and A1, apply the
first action in the sequence and then proceed to the next ones (assuming that
the considered term-graph is ready for this action). AT handles node creations,
whereas A handles all other actions.

[apply(G, a.7) | ] ~ 4 o [apply(Gray, 7) | G5

If a is not a node creation, [G | ¢] is ready for a.

+
lapply(G,a™.7) | 61° ~ 4+ [apply(Grary 7o) [6A [\ B
BEVAN(G)

If o = {a — v} where v = NewNode(G).

The added disequations ensure that the variables already present in the term-
graph are distinct from the newly created node 7 (this is essential to prevent
these variables to be unified with - afterwards).

The above rules are clearly not sufficient to ensure completeness. Consider
for instance the following rule: A: f(ca:a, ) — ) a:b. Assume we want to apply the
narrowing rule on the g-term f(d:a,d":a), where §,6" denote variables. Then the
narrowing rule cannot apply, because we do not know at this point whether § = ¢’
or not. If § = ¢’ then the term-graph should be reduced to: f(d:b,d). Otherwise,

www.manaraa.com



we should get: f(9:b,0":a). In other words, the considered term-graph is not
ready for the action §:b because §’ is not isolated. Since both options are possible
(namely 6 = 6’ or § # §’) we need to consider the two possibilities separately,
i.e. in two distinct branches. This is done by the two following branching rules,
denoted by B= and B respectively.

[apply(G, a.7) | ¢1° ~ g=, [apply(Go, (a.7)o) | ¢o]*
If a € r(a), B is a non a-isolated node in G

and o is a most general substitution compatible with G s.t. ao = (o.

[apply(Ga) | 91° ~ pe | Lapply(G,a.7) | ¢ A a7 B¢

If a € r(a), B is a non a-isolated node in G.

The reader should note that in both cases, 8 becomes a-isolated after ap-
plication of the rule (either because it is instantiated by « or because the
disequation « % [ is added in the constraints). Applying these rules on
the term-graph [apply(f(8:a,d":a),5:b) | T]? yields the two following g-terms:
lapply(f(5:a,6),0:b) | T]? ~» [£(6:b,68) | T]*® and [apply(f(:a,6":a),d:b) | § %
61 ~~ [f(5:b,6":a) | & 5 6']%°

Definition 5. If R is a set of rewrite rules, then we write G ~gr ¢ H if G~ ¢
H for some p e RU{T,A, A", B* B=}. R 18 inductively defined as follows:
G~k H iff either ¢ = 0 and G = H or G ~g,, G',G' ~% y H, 0 is a
g-substitution of Gry and ¢ = 9.

We provide a detailed example of application. We define the following func-
tions # and equal computing respectively the length # of a circular list (rules
p1, P2, p3) and the equality on natural numbers (&1, &2):

a#(B) —a c# (B,8) (p1)  a:dt (Biicons(Bz, B3), Bs) —a o, azs(a), a0 (p2)
[81:#' (B2:cons(Bs, Ba), Bs) | Ba # Bs] — 5, o', Przs(a’), o« :#' (B4, B5) (p3)
aequal(0,0) —q a:true (£1) azequal(s(B1), s(B2)) —a azequal(fi, B2) (&2)

Assume we want to solve the goal*: y:equal(y':#(v"), s(s(0))) —* true (i.e.
to find the circular lists 4" of length 2). We assume that 4" is a variable and
~,7" are names. The corresponding narrowing derivation is depicted below. We
get the (unique) solution: v":cons(Bs, Ba:cons(B5,7")) where v # B4 (the other
disequations are irrelevant since o/ and «” do not occur in the term-graph).
In order to improve the readability we do not specify the sequence of actions
occurring in the g-terms, since they can be easily recovered from the previous
steps. Moreover, we only give the derivation yielding true (the reader can check
that all the other derivations fail).

4 There are many ways to define goals in the literature (equations, booleans, expres-

sions,. .. ). In this paper we rather focus on the basic narrowing steps. Additional
rules may be added when needed.

www.manaraa.com



vequal(y'#(7"), s(s(0)))
~pyapply(yrequal(y'=#(v"), s(s(0))), 7" # (v, 7"))
~ A apply(y:equal(y":#' (v",7"), s(5(0))), €)
w7 yequally (", 7"), 5(s(0))
p3 [apply(y: equal(y' 4 (" ’Y ":cons(Bs, B4)), 5(5(0))),
o't yis(a), o # (Ba, 7))
| Bs #7"]
ot Lapply((v:equal(y':#' (v :cons(B3, B1),7"), s(s(0))), &),
V'is(d), o3 (Ba, 7))
| 64 A?'é ’Y”763 % alaﬁ‘l % a177// % O/]]
w4 lapply((y:equal(y':5(a’), 5(s(0))), 7" cons(B3, Ba), ),
o3 (Ba, 7))
| 64 A?'é ’Y”763 % alvﬁ‘l % a/77// % O/]]
4 [[;lpply(viequal(vlis(a'i#/(@x,7"500"8(53,54))),8(5(0)))’
€
| Ba % ’Y”763 % alvﬁ‘l % ala’yﬁ % CVI]]
wp Drequal(yss(o/# (B, ":cons(Bs, 52))), 5(s(0)
| Ba 7//753 % O/,ﬁ4 % Ot/,’)/// # Ol/]]
v A Drequal(el (817" cons(Bs, ). 5(0))
| ﬂ‘l h’7é 7//7ﬁ3 % O‘/7ﬁ4 % O‘/7'y// % O/]]
~py [apply(y:equal(a/ 3 (Ba,~":cons(Bs, Bazcons(B2,7"))), (0)),
ot alis(a”), a:0))
| ﬂ‘l h’7é 7//7ﬁ3 % O‘/7ﬁ4 % O‘/7'y// % Oé/]]
~ g+ lapply((v:equal(a’ 3 (Ba, 7" :cons(Bs, Bazcons(B2,7")), 5(0)), &),
a:s(a’), a":0)
| Ba " Bstd/ Baa Y #a Y %" Bz %", B a”, By % ]
~ 4 A, T [riequal(a’:s(a”:0), 5(0)), 7" :cons(Bs, Ba:cons(Ba,7"))
| Ba " Bst o/ Pata Y % Y %" Bz a”, B a”, By % ]
e, AT [riequal(a’”:0,0), 7" :cons(Bs, Ba:cons(B2,7"))
| Ba# ", Bstd/ \Ba Y % v %" Bz a”, iz a”, By % ]
e AT Dyitrue, " :cons(Bs, Bs), Bazcons(B3,7")
| Badt ", Bs o, fast /" % a v %", Bs %", Bsi ", B % ]

¥
(v
)s

6 The Properties of the Narrowing Relation

Soundness and Completeness are defined w.r.t. the ground rewriting rule intro-
duced in Definition 3.

Soundness ensures that every narrowing derivation can be related to a se-
quence of rewriting steps, operating at the ground level. More precisely, if we
have [G | T]? ~x. [H | qﬁ]]T then for any ground instance ¥ of H solution of
¢, we should have G¢¥ —% H?v. Unfortunately, this property does not hold for
all substitutions ¥. Indeed if 9 contains a node o on which a global redirection
is performed during the narrowing derivation, then the term-graph obtained by
rewriting from G¢4 is different from H1J, since any instance of « in 1 should be
redirected during the rewriting process. Thus we will assume that 1 contains no
such node (this property is always satisfied if we restrict ourself to irreducible
derivations, see Definition 6). Similarly, ¥ should not contain any created node.

Ol Ll Zyl_ﬂbl

www.manharaa.com




Theorem 1. (Soundness) Let R be a set of rewrite rules. Let [G | ¥]™ and
[H | '] be two g-terms s.t. [G | ] R [H '], Let 9 be a ground
g-substitution of H s.t. 9 € sol(y)’) and Gry contains no node a s.t. a € C or
a> B e, for some 3 €N. U is a g-substitution of G. Moreover value([G |
V]7s) =% value([H | ¢]79).

In particular, this implies that if G, H are two term-graphs s.t. [G | T]¢ ~gr.¢
[H | ] and 9 is a g-substitution of H satisfying the above conditions, then
Gs¥ —5 HY.

Completeness expresses the fact that every rewriting derivation from a ground
instance of a considered term-graph G can be subsumed by narrowing from
[G | T]°. More precisely, if ¢ is a g-substitution of G s.t. G¢ —* H then there
should exist a narrowing derivation [G | T[? ~x_, [G" | 4|7 and a g-substitution
¥ € sol(¢) s.t. G'Y = H and ¢ = 0.

However, as for usual narrowing algorithms, this property does not hold for
every substitution ¢, but only for those that are irreducible w.r.t. the consid-
ered set of rewrite rules. The definition of an irreducible substitution is more
complicated than in the usual case (i.e. for standard terms), since we have to
take into account global redirections. Roughly speaking a term-graph G will be
considered as reducible iff a rule can be applied on a node in dom(G) (1) or if
a rule can globally redirect a node in G (2) or if it contains a created node (3).
More formally:

Definition 6. A g-substitution ¢ = (0,G) is said to be R-irreducible iff the
following conditions hold:

1. There is no rule L —x R € R s.t. there exists a substitution 0 of the variables
in L s.t. LO>1 G and N0 € dom(G).

2. Thereis no rule L — R € R s.t. there exists a substitution 0 of the variables
in L and a node « € N(L) s.t. LO < G, ac € N(G), R contains an action
of the form a > 8 for some 3 € N.

3. NG)nC=0.

If a constructor based signature is used, then Condition 1 simply states that
¢ contains no defined function. Similarly, Condition 2 can be easily guaranteed
if only nodes labeled by defined functions can be globally redirected (this is a
rather natural restriction). Condition 3 simply expresses the fact that ¢ should
not contain any created node.

Theorem 2. (Completeness) Let R be a set of rewrite rules. Let G, H be two
term-graphs and let ¢ be an R-irreducible ground substitution of the variables in
G s.t. Gs —% H. For any ¢ s.t. s € sol(¢) and for any sequence of actions T
s.t. 7(1) C dom(G), there ezists o s.t. [G | ¢]" ~% , [G" | ¢]7" and V' € sol(3))
s.t. ¢ =0, G' is a term-graph, and value([G' | P]¥') = H.

In particular, if G¢ —% H and ¢ is R-irreducible, then there exist g s.t.
G| Tl ~%, [G"| 4] and 9 € sol(y) s.t. ¢ = oV, G’ is a term-graph, and
G'9=H.

www.manaraa.com



7 Conclusion

We have shown that narrowing could be extended to a large class of term-graph
rewrite systems. The considered rewrite rules allow one to fully handle data-
structures with pointers thanks to the actions like pointer redirections, node
redefinition and creation. These results are the first ones concerning the nar-
rowing relation in such a wide class of term-graph rewrite systems. It is also
the first narrowing-based algorithm able to synthesize cyclic data-structures as
answers in a context where bisimilar graphs are considered as equal only if they
are identical. In this paper we were rather interested in the basic definition
of narrowing, its soundness and completeness. Optimal term-graph narrowing
strategies as studied in [7,8,1] are out of the scope of this paper, but a mat-
ter of future work. The considered term-graph rewrite systems are not always
confluent. We proposed in [6] the use of term-graphs with priority in order to re-
cover the confluence property within orthogonal systems. The future narrowing
strategies should certainly integrate the priority over the nodes of a term-graph
in addition to neededness properties.

References

1. S. Antoy, D. W. Brown, and S.-H. Chiang. Lazy context cloning for non-
deterministic graph rewriting. In Third International Workshop on Term Graph
Rewriting, TERMGRAPH, pages 61-70, 2006.

2. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776-822, July 2000.

3. A. Bakewell, D. Plump, and C. Runciman. Checking the shape safety of pointer
manipulations. In RelMiCS, pages 48-61, 2003.

4. A. Bakewell, D. Plump, and C. Runciman. Specifying pointer structures by graph
reduction. In AGTIVE, pages 30-44, 2003.

5. H. Barendregt, M. van Eekelen, J. Glauert, R. Kenneway, M. J. Plasmeijer, and
M. Sleep. Term Graph Rewriting. In PARLE’87, pages 141-158. Springer, LNCS
259, 1987.

6. R. Caferra, R. Echahed, and N. Peltier. Rewriting term-graphs with priority. In
Proceedings of PPDP (Principle and Practice of Declarative Programming). ACM,
2006.

7. R. Echahed and J.-C. Janodet. Admissible graph rewriting and narrowing. In
IJCSLP, pages 325-342, 1998.

8. R. Echahed and J. C. Janodet. Completeness of admissible graph collapsing nar-
rowing. In Proc. of Joint APPLIGRAPH/GETGRATS Workshop on Graph Trans-
formation Systems (GRATRA 2000), March 2000.

9. A. Habel and D. Plump. Term graph narrowing. Mathematical Structures in
Computer Science, 6:649-676, 1996.

10. M. Hanus. The integration of functions into logic programming : from theory to
practice. Journal of Logic Programming, 19&20:583-628, 1994.

11. M. K. Rao. Completeness results for basic narrowing in non-copying implementa-
tions. In Proc. of Joint Int. Conference and Symposium on Logic Programming,
pages 393-407. MIT press, 1996.

12. H. Yamanaka. Graph narrowing and its simulation by graph reduction. Research
report [TAS-RR-93-10E, Institute for Social Information Science, Fujitsu Labora-
tories LDT, June 1993.

www.manaraa.com



